

The Nucleus

Stage 1 Physics

A bit of history

450BC – Democritus

- Everything is made up of indivisible parts called Atoms
- In between is empty space
- At the time everyone including Aristotle said he was wrong

More history – the Electron

- 1897 JJ Thomson <u>https://www.youtube.com/watch?v=2xKZRpAsWL8</u>
- suggested one of the fundamental units was more than 1,000 times smaller than an atom
- Using a cathode ray tube (modified Crooke's tube) he produced;
 - negative particles (due to their being bent in an electric field)
 - $\frac{1}{1000}$ the size of an atom; based on the energy released in impact
- Concluded that atoms contain negatively charged particles
- Plum Pudding model where the electrons were evenly spread throughout a sphere of positively charged material.

More history – the Proton

- 1909 Rutherford <u>https://www.youtube.com/watch?v=wzALbzTdnc8</u>
- Gold foil leaf experiment
- Most of atom is empty space
- Solid nucleus
- Positive Proton identified
- Neutron needed to make up total mass,
 - proposed but not found

More history – Atomic model

1915 – Niels Bohr <u>https://www.youtube.com/watch?v=1b9UKTbjj7l</u>

- Demonstrated that electrons have specific energy levels associated with them
- Proposed orbital model (wrong, but good for chemistry)

• Niels' work is important, more on it later

More history – Atomic model

- 1932 James Chadwick
- bombarded beryllium with alpha particles releasing a neutral particle with a similar mass to a Proton
- Thus, experimental evidence of the Neutron

A bit more history

 The Neutron was the hardest to find. It has no charge, is fixed within nuclei and only lasts some 14 minutes if separated from the nucleus

- Thus we have a solid nucleus of Protons and Neutrons with Electrons 'orbiting' around it
- That should all be firmly in your memory from year 10

Back to Niels Bohr

- Atoms can absorb photons of light
- Atoms can emit photos of light
- BUT the photons are discrete, distinct frequencies for each element (different for each element)

The Bohr model of the Atom The first glimpse of our current view

- Atoms emit discrete frequencies of light
- Niels Bohr, using the concept of the Photon (Max Planck, Albert Einstein) postulated that Electrons exist around the nucleus in discrete energy levels.

• These discrete energy levels are called shells in chemistry.

Niels Bohr

What does this mean

- If you fire Photons of light at an Atom
 - Only discrete frequencies are absorbed
 - Any other frequency simply goes through
- But then..
 - The absorbed frequencies are re-radiated as Photons of the exact same frequency that was absorbed at a later time

The Bohr model of the Atom

The Atom in pictures, 1

Democritus' view of atoms

Image courtesy chemtas.com

The atom in pictures, 2

JJ Thomson's view of the atom

Image courtesy socratic.org

The atom in pictures, 3

Rutherford's view of the atom

Image courtesy thestargarden.co.uk

The atom in pictures, 4

• Niels Bohr's view of the atom

Image courtesy timetoast.com

Time for a new view of the atom

- On the right is a hydrogen atom
- Somewhere a metre below the bottom is the nucleus
- Each of the levels; 1, 2, ,etc are the energy levels the electrons can sit at (they cannot be anywhere else)
- In hydrogen the electron would naturally sit on level 1
- But if we add some energy we can push the electron up a level

lsotopes

 Isotopes are variants of a particular element which differ in Neutron number, and consequently in Nucleon number. All Isotopes of a given element have the same number of Protons but different numbers of Neutrons in each Atom.

 Note; Nucleon number is the number of Protons and Neutrons

Back to the Nucleus

- The Nucleus is made up of Protons and Neutrons
- Protons have a charge of $1.60 \times 10^{-19}C$
- And typical nucleus is $10^{-14}m$ in radius
- Using Coulomb's Law

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$
$$F = 0.58N$$

The electrostatic force between two protons is ENORMOUS

- So, something must keep it together
- This is the Nuclear Force, a component of the Strong Force

New stuff

- The Strong Force has two components;
 - The Strong Nuclear Force, which is between Baryons
- What's a Baryon? A Baryon is a particle made up of 3 Quarks
 - Protons and Neutrons Baryons
 - Protons and Neutrons are also Hadrons (2 or more quarks, in this case 3)
- This component of the Strong Force is called the Strong Nuclear Force and is carried by Pions
- What's a Pion? We will get to that

Strong Force, Part 2

- As well as being between Baryons (The Strong Nuclear Force)
- The Strong Force has a component between Quarks called the Color Force
- The Color Force acts between the three Quarks holding them together to make a Baryon
- Color Force is carried by Gluons

Back to Pions

- Pions are made up of a Quark and an Anti Quark
- Yep, Antimatter
- Every fundamental particle has an antimatter particle
- So what's a fundamental particle?
- These are;

The Standard Model

Standard Model of Elementary Particles

So.. What are Protons and Neutrons?

But we just use u and d u u d d d u

To understand Pions every component has an antimatter component

What makes antimatter

- In simple terms; it has the opposite of all of the properties of its matter equivalent, except it has the same mass
- As a result, when matter and antimatter interact, they annihilate each other becoming the energy of the combined masses
- Put another way; since all properties other than mass are opposites, when those properties "disappear", those properties have been 'conserved'. Mass becomes energy and thus is conserved
- When matter and antimatter meet they `annihilate' each other becoming energy – lots of energy

Interesting

- Photons (the fundamental unit of light) have anti photons
- Since all properties other than energy/mass have to be conserved, the anti photon is created;
 - In the same place
 - With an identical frequency
 - Travelling the opposite direction
 - With time travelling in the opposite way
 - (note, the time conservation is a mathematical construct)

But, back to the Nuclear Force

- Remember, the Nuclear Force is the component of the Strong Force that holds Baryons together
- Baryons are 3 Quark particles
- Protons and Neutrons are Baryons
- And, we said, the force is carried by Pions
- Now it is finally time to talk about Pions

New terms

- Meson a two Quark particle made up of a Quark and an Anti-Quark
- Pion a type of Meson made up of a Down and an Anti-Down Quark
- The formal name is a Pi neutral (π^0)
- Down Quarks have the symbol *d*
- Anti-Down Quarks have the symbol \bar{d}
- Thus π^0 is $d \bar{d}$

Time to blow the mind

- Nothing is stable at the fundamental level
- Baryons spontaneously emit energy
- This energy becomes a pair of Quarks (one matter and one anti matter)
- A Pion (d and \overline{d}) can result
- Pions travel from the Baryon they were emitted by to another Baryon

Where did the energy come from?

- A Proton has a mass of $1.67 \times 10^{-27} kg$
- The 3 constituent Quarks have a total mass of less than 1/1000 of that mass
- The rest of the "mass" of the Proton is energy
- That energy is available to make Pions
- Pions are constantly being made, emitted then absorbed, annihilated so that the net energy change is zero.

Pion life

 Pion is 'created' by a
Baryon emitting a quark and an anti quark which then travel to another
Baryon, being absorbed by the other Hadron

 π° UU UU D

Mesons

 There are 6 different quarks and 6 anti quarks, allowing for 36 possible Mesons of which a Pion is one

• The $\pi^0(Pi \ neutral)$ is made up of a down and an anti down Quark

Summary time

- Protons have a positive charge
- Therefore Protons are electrostatically repelled from each other
- The Nuclear Force component of the Strong Force counteracts that repulsion and keeps the Protons together in the nucleus of an atom
- The Nuclear Force is "carried" by Pions
- Pions are emitted by one Baryon and absorbed by another

Back about 13 slides ago ...

- Previously we mentioned that the Strong Force also has a component called Color Force that holds the Quarks together to create the individual Hadrons
- Strong Force is carried by Gluons

Standard Model of Elementary Particles

A momentum property called spin

No mass

No charge

They also carry Color and Anti Color

Okay ... what is Color

- First, its spelt "Color" because it's a name (proper noun) like 'Charleen' and not a term like 'behaviour' that is spelt differently in different versions of English
- Sorry OCD people, I realise that this hurts; tough!
- Quarks have a property, related to energy that is called Color.
 - There are three Colors 'red', 'green', 'blue'
 - Each Quark is 'charged' with a Color
 - A Baryon must be Color neutral (have one each of RGB)

Gluons travel between Quarks

 Gluons move from one Quark to another continually changing the Color of the quark it left and the one it is absorbed by to maintain Color neutrality.

New Summary

- Baryons are made of 3 Quarks
- The Quarks have 1 of 3 Colors (red, green, blue)
- The **Baryon** must be Color neutral
- Gluons (a fundamental particle) travel between Quarks continually changing Colors to maintain Color Neutrality
- This is the Color Force, It is a component of the Strong Force
- Gluons carry both a Color and an anti Color

Full summary

- The Strong Force has two components;
- The Strong Nuclear Force, which is between Baryons
 - This component is carried by Pions
- The Color Force acts between the three Quarks holding them together to make a Baryon
 - Color Force is Carried by Gluons

