Radioactive decay

SACE says

 "Unstable Nuclei will undergo radioactive decay in which particles and/or electromagnetic radiation are emitted."

• But, what does that all mean?

• Lets have a wander ... (right back to the start)

Nuclei

- Nuclei is the plural of Nucleus, the centre of an Atom
- Atoms;
 - A unit of matter; the smallest unit of a chemical element.
 Each atom consists of a nucleus, which has a positive charge, and a set of electrons that move around the nucleus. (dictionary.com)
 - Atoms have zero charge (number of protons = number of electrons)
 - Ions have a charge as a result of having more or less Electrons than Protons

Atoms are ...

- Made of Protons and Neutrons in the Nucleus with Electrons in energy levels around it.
 - You knew them as 'shells' in year 10
- Protons and Neutrons are made of Quarks, a fundamental particle
- Fundamental means it is not made of other particles, not that in cannot be created or decay

So what is an 'unstable nucleus' ?

- In simple terms, it is any Nucleus that will spontaneously decay.
- Decaying is where
 - Atoms break into different (smaller) atoms
 - Or

Sub-atomic particles turn into different subatomic particles

In both cases energy is released as part of the decay process

An example of an 'unstable nucleus' ?

- Some isotopes like He²(no neutrons) have a half life of 10⁻⁹seconds, Uranium 236 U²³⁶has a half life of 2 × 10⁷years, both are considered "unstable"
 - Remember, half life is how long it takes for half of the sample to decay.

Radioactive Decay

 Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. (Wikipedia)

NOTE

- Radioactive decay is all about 'losing energy by radiation'
- NOT becoming somethings else or breaking up
- The two usually happen together, however, the term "radioactive" refers to radiation
- Dictionary definition;
 - the emission of energy as electromagnetic waves or as moving subatomic particles, especially high-energy particles which cause ionization.

Recap

- Radiation. The most common form of radiation is Electromagnetic Radiation.
- Visible light is part of the spectrum of Electromagnetic Radiation. So is gamma radiation, microwave radiation, radio waves, etc.

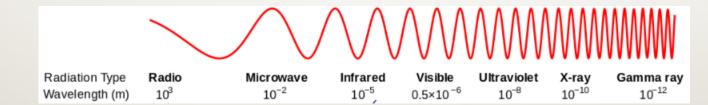
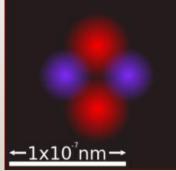



Image courtesy Inductiveload, NASA

There are 3 other 'common' types of radiation

- Alpha
- Beta plus
- Beta minus

 In Alpha decay, a nucleus spontaneously emits an alpha particle (2 protons and 2 neutrons). Equal to a helium nucleus.

Beta decay (be careful)

Beta minus decay

 the Nucleus emits an Electron and an Anti-Neutrino in a process that changes a Neutron to a Proton

$${}^{1}_{0}n \rightarrow {}^{1}_{+1}p + {}^{0}_{-1}e + {}^{0}_{0}\overline{\nu}.$$

- Beta plus decay
 - the Nucleus emits a Positron and a Neutrino in a process that changes a Proton to a Neutron (also known as Positron emission).

$${}^{1}_{+1}p \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e + {}^{0}_{0}\nu.$$

Sound familiar? – Weak Force interaction

- A Neutrino passes close to a Neutron in an unstable isotope and;
 - Becomes a W^+ boson and an Electron
 - The W⁺ boson interacts with a Down Quark in the Nucleus and changes it into an Up Quark.
 - An Anti-Neutrino is created in the interaction to conserve spin and energy

So ...

 $^{\bullet}W^{+}$ boson is the weak force particle in Beta minus decay

• Yes read that again ..

- And
- $^{\bullet}W^{-}$ boson is the weak force particle in Beta plus decay

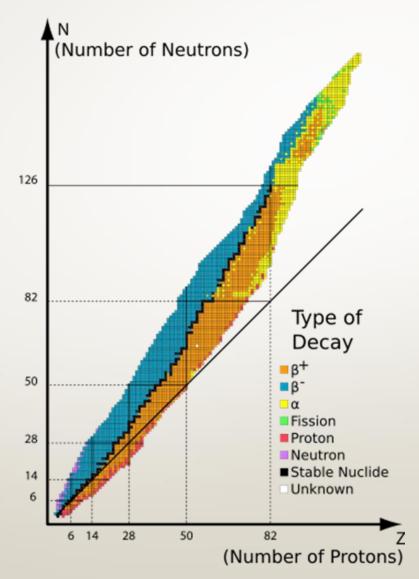
But there is more ...

Neutron Emission

 extremely Neutron-rich Nuclei, lose energy by way of Neutron Emission, resulting in a change from one isotope to another of the same element.

Electron Capture

 the Nucleus captures an orbiting Electron, causing a Proton to convert into a Neutron in a process. A Neutrino and a Gamma ray is subsequently emitted.


Cluster Decay and Nuclear Fission

• a Nucleus heavier than an Alpha Particle is emitted.

Summary time

- Radioactive decay is where atoms decay (lose energy) either through;
 - Alpha decay
 - Beta⁺ or Beta⁻ decay
 - Neutron Emission
 - Electron Capture
 - Cluster Decay and Nuclear Fission

NZ Graph

