Circuit analysis

What is a circuit?

- An electric circuit is the path through which electric current flows.
- For current to flow there must be a potential difference between the ends of the circuit (voltage difference)

Circuit analysis is the ...

- Calculation of current <u>through</u> components (I, measured in amperes, A)
- Voltage drop <u>across</u> components (V, measured in volts, V)

And, as a result

• The power available to a component (P = IV, measured in watts, W)

A component

A component is any part of a circuit

- Wires
- Switch
- Battery
- Motor
- Resistor
- etc.

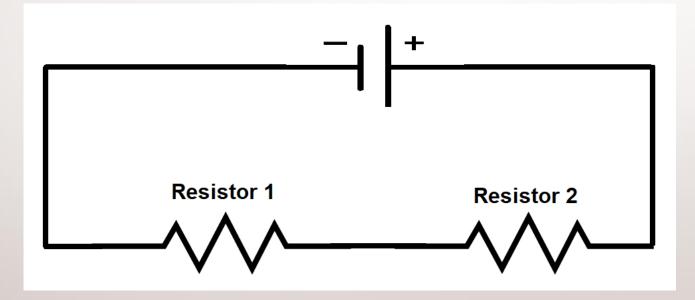
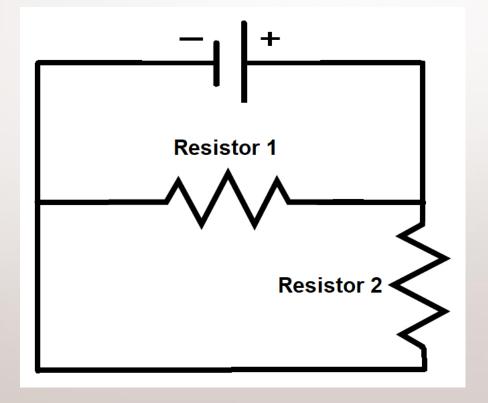

Circuit components

image courtesy BC Hydro

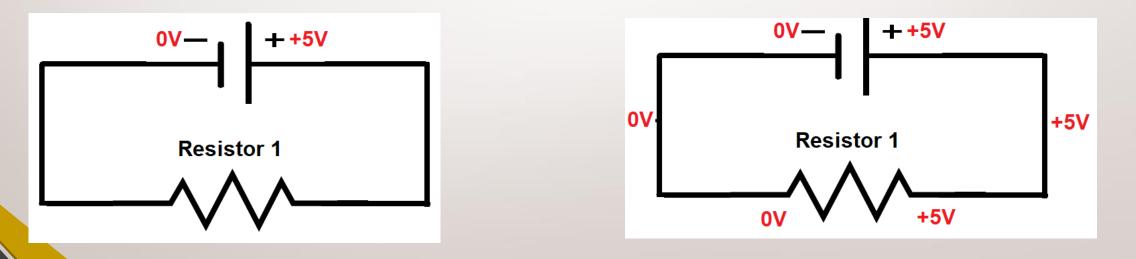
Ammeter	Voltmeter	Light bulb
Connection point	Resistor	On/off switch
— o —	$-\!$	-0-0-
Wire	Battery	Motor

Terminology 1

 Components are in <u>SERIES</u> when they are on the same path in the circuit. Resistors 1 and 2 are in series below.


Terminology 2

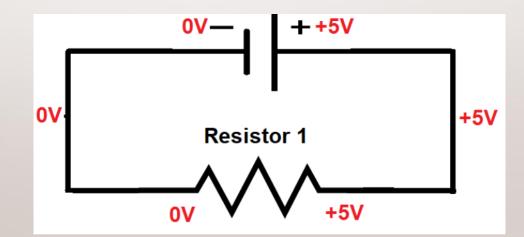
• Components are in <u>PARALLEL</u> when they are on parallel paths in the circuit. Resistors 1 and 2 are in parallel below.


Warning

• "parallel" isn't really parallel, just down separate paths, for example, resistors 1 and 2 are "parallel" in the diagram below.

A simple beginning

- Consider the circuit on the left, it has a 5V battery. If the right side of the battery has a potential of +5V, then that whole piece of wire has a potential of +5V and also, the whole left piece of wire has a potential of oV
- Thus, the potential drop across the resistor must be 5V


But ... what if two resistors are in series?

 As seen below, the right wire has a potential of +5V, the left wire a potential of oV. If the resistors are of equal resistance, then the potential drop across each must also be equal. So the wire in the centre must have a potential of 2.5V and the <u>circuit potential</u> drops 2.5V with each resistor.

But, lets back the truck up for a second ...

- Below is a circuit where the voltage V drops across a resistance R.
- Note, it doesn't matter how big (or small) R is, the whole voltage will drop across it.
- If the resistance is big, the current will be slow
- And .. If the resistance is small, the current will be fast
- Ohm's Law gives us the relationship: V = IR

Ohm's Law

V = IROr $I = \frac{V}{R}$

 The amount of current that flows through a component(s) is equal to the size of the voltage across the component(s) divided by the resistance of the component

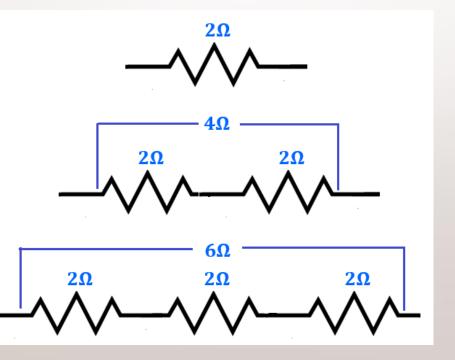
Quick calculation

• If the resistance in the resistor in the circuit below is 2Ω ("2 Ohms") then using Ohm's Law

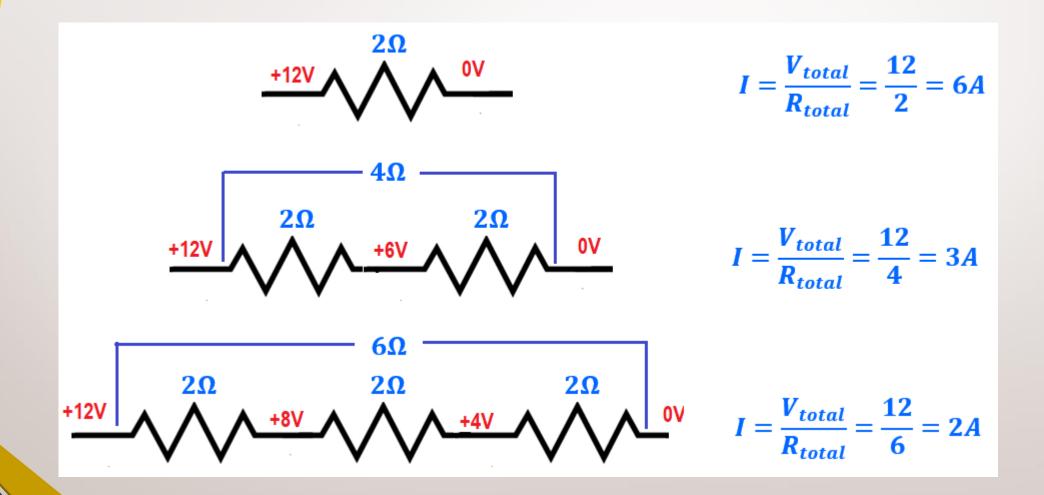
$$V = IR \text{ or } I = \frac{V}{R}$$

We can calculate that the flow of current (I) is

$$I = \frac{V}{R} = \frac{5}{2} = 2.5A$$

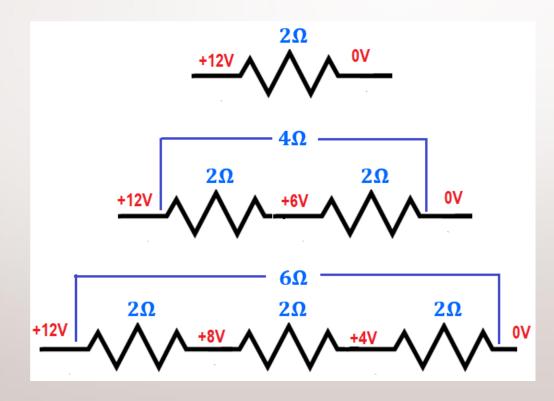

Ohm's Law ...

- Ohm's Law works for any point(s) in a circuit at any point in time but ...
 - Resistance can change as a result of voltage (potential) across component(s)
 - Or resistance can change with the temperature of components
 - Or resistance can change over time due to a change in the molecular


Add resistors in series

- What happens if we place resistors in series?
- The total resistance is simply the sum of the resistors

$$R_{total} = R_1 + R_2 + R_3 + \dots$$

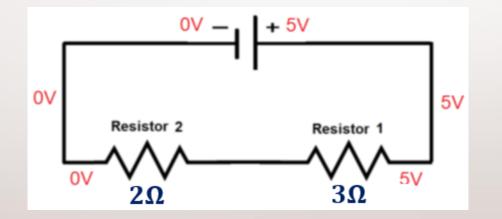


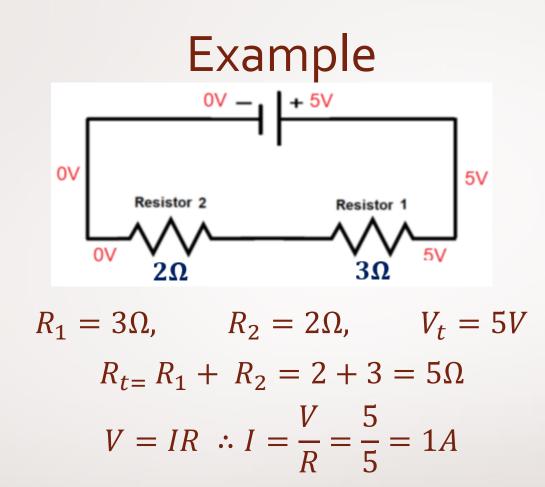
And Ohm's Law can be used on each ..

IFF (if and only if)

 The resistors are all the same resistance, then the voltage (potential) will drop equally across each resistor

But, fear not if the resistors are different


- Total resistance is still the sum of the resistances
- Thus current can still be calculated with Ohm's Law


$$(I_{total} = \frac{V_{total}}{R_{total}})$$

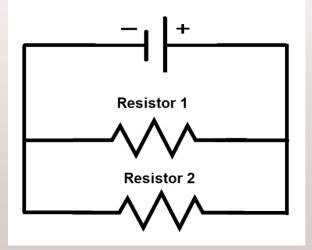
 NOTE: Current will be the same at all points along that section of wire, so I_{total} is I for that section of wire.

And

- Once you have the current through the set of components
- You also have the current through each component
- Lets consider the example

Now we can use Ohm's Law again to calculate the voltage drop in each resistor $V_1 = IR_1 = 1 \times 3 = 3V$ and $V_2 = IR_2 = 1 \times 2 = 2V$

Series recap


- Components on the same line are in series
- Total resistance on a series is the sum of resistances

 $R = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + \dots + R_n$

- The current through a series is constant
- Ohm's Law can be used on individual components or on part or on the whole series

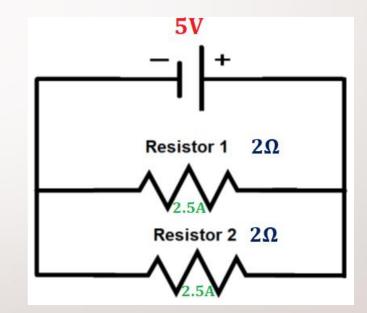
Parallel circuit lines

- In a parallel circuit the current "has a choice" of which path to take
- Some current will go down each path
- How much current takes each path is determined by the relative strengths of the resistors

The trivial case

- Consider a parallel circuit with only two resistors and where both resistors are the same strength
- In this case, the current will go equally down each path
- We know that the voltage drop on both resistors will be 5V, so using Ohm's Law

$$I_1 = \frac{V}{R_1} = \frac{5}{2} = 2.5A = I_2$$


So ... what is the total current?

- Remember; current is a flow of electrons
- So ... if 2.5A worth of electrons flows down one path and 2.5A worth of electrons flows down the other, then the total current will be ...

$$2.5 + 2.5 = 5A$$

The total flow of current down parallel circuits will be the sum of each individual path

Formulas

• For resistance in series we have a lovely formula $R = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + \dots + R_n$

Is there a similar, Dirac quality, formula for parallel? Nah

But there is a formula

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \dots + \frac{1}{R_n}$$

Tackling big circuits

- With a few simple formulas ... and a modicum of thought, you can tackle any size circuit.
- You just
 - "build the circuit up" and
 - "break the circuit down" as required